Semiconductor Laser Annealing

Photo: IGBT wafer, courtesy Fraunhofer Institute for Silicon Technology (ISIT), Itzehoe, Germany
Semiconductor Laser Annealing

Pulsed Laser Annealing of Power Devices and Backside Illuminated Image Sensors

Pulsed green Laser Annealing was successfully used to produce 1200V/200A Field Stop Trench IGBTs of a custom-designed Integrated Traction Inverter for an E-Mobility Drive. The total switching loss of the power modules could be reduced by 50% compared to a reference module1,2.

IGBTs for a voltage range of 600V to 1200V typically require 60µm to 140µm thin silicon. The implanted IGBT backside also requires dopant activation. A furnace annealing process at high temperature (> 900°C) is prohibited as thin wafer might be mechanically stabilized by temporary bonding it to a carrier wafer using a polymer film with damage threshold >180°C.

Short laser pulses of <1 µs is the suitable solution to provide a high process temperature which is strictly localized within the laser spot and thus prevent the temperature from exceeding the damage threshold for the bonding layer and the wafer front side. Short laser pulses keep the temperature on the wafer front side low and the front-side metal contacts intact.

Backside illuminated image sensors are another example which benefit from pulsed laser annealing. A shallow implant layer on the surface can be activated while keeping buried structures like sensors and metal contact layers fully intact.

Ohmic contact formation on SiC completes the list with a further successful application.

1) PCIM Europe 2018, 5 – 7 June 2018, Nuremberg, Germany
Ulf Schümann et al., ISBN 978-3-8007-4646-0,
VDE VERLAG GMBH · Berlin · Offenbach, pp. 103-110, (2018)
2) BMWi Verbundprojekt InMove , funding reference 01MY15001B,
Fraunhofer ISIT, Iffezheim, Germany

INNOVAVENT VOLCANO Laser Optics

The new INNOVAVENT VOLCANO semi Laser Optics are available for the green wavelength (532/527nm) and combining IR (808nm) and green lasers. The temporal profile is controlled by delay control of two green laser pulses for optimizing the activation depths from about 0,1µm to 2µm. The dual wavelength version with a combination of infrared and green lasers provides the activation up to a 3,5µm depth. Both system configurations offer a unique flexibility due to independently variable pulse durations of IR and green. Various additional parameters like laser intensities and scan speed can be widely adjusted for a precise process optimization. Processing of semiconductor devices can be optimized easily by selecting pre-programmed recipes.

VOLCANO semi Laser Optics configurations are available for other applications like contact formation on SiC wafers as well.

Options and features
Process Shutter, Beam Profiler, Pulse Delay Setting, Melt Monitor, etc.

<table>
<thead>
<tr>
<th>VOLCANO semi IGBT</th>
<th>VOLCANO semi IGBT Dual Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>shallow and medium depth dopant activation, SiC contact formation</td>
</tr>
<tr>
<td>wafer size</td>
<td>depending on wafer handler</td>
</tr>
<tr>
<td>wavelength</td>
<td>532nm (or 527nm)</td>
</tr>
<tr>
<td>laser line size</td>
<td>7.5mm x 30µm</td>
</tr>
<tr>
<td>process duration (pulse delay length)</td>
<td>300ns - 1200ns</td>
</tr>
<tr>
<td>energy density/power density</td>
<td>variable, up to 5J/cm²</td>
</tr>
<tr>
<td>pulse repetition rate</td>
<td>10kHz</td>
</tr>
</tbody>
</table>

INNOVAVENT GmbH
Reinhard-Rube-Str. 4
37077 Göttingen, Germany
phone: +49 (0) 551 90047-0
fax: +49 (0) 551 90047-19
www.innovavent.com
info@innovavent.com

North America
phone: +1 415 800 4848
www.innovavent.com
infoua@innovavent.com

Japan, China (PRC), Taiwan (ROC)
OPTOPIA Co., Ltd
611 West Tower
Kanagawa Science Park
3-2-1 Sakato, Takatsuku, Kawasaki
Kanagawa, Japan, 213-0012
phone/fax: +81 44 812 5911/21
www.optopia.co.jp
sales@optopia.co.jp